Improving Biometric Identification Through Score Level Face Fingerprint Fusion
نویسنده
چکیده
Multi-modal biometric fusion is more accurate and reliable compared to recognition using a single biometric modality. However, most existing fusion approaches neglect the influence of the qualities of the biometric samples in information fusion. Our goal is to advance the state-of-the-art in biometric fusion technology by providing a more universal and more accurate solution for personal identification and verification with predictive quality metrics. In this work, we developed score-level multi-modal fusion algorithms based on predictive quality metrics and employed them for the task of face and fingerprint biometric fusion In this paper the performance of sum rule-based score level fusion are examined. Before fusion of sum rule, normalization is done by using any one technique like min-max normalization, z score normalization and tanh estimator’s normalization. In this paper min max normalization is used for normalization.
منابع مشابه
An Efficient Boosting Approach for Score Level Fusion of Face and Palmprint Biometrics in Human Recognition
Biometrics based personal identification is regarded as an effective method for automatically recognizing a person’s identity with confidence. A multimodal biometric system consolidates the evidence presented by multiple biometric sources and typically better recognition performance compare to systems based on a single biometric modality. This paper proposes a novel multipartite algorithm for s...
متن کاملAnalysis of Bipartite Rankboost Approach for Score Level Fusion of Face and Palmprint Biometrics
Biometrics based personal identification is regarded as an effective method for automatically recognizing, with a high confidence a person’s identity. A multimodal biometric systems consolidate the evidence presented by multiple biometric sources and typically better recognition performance compare to system based on a single biometric modality. This paper proposes an authentication method for ...
متن کاملStudies of Biometric Fusion NISTIR 7346; Appendix B: Effectiveness of Score-Level Fusion
This three-part appendix contains the results of experiments measuring the effectiveness of different categories of fusion: multi-modal (finger and face), multi-instance (multiple finger positions), multi-matcher, and multi-sample (multiple enrollments). Appendix B.1: Score-Level Fusion of Face and Multiple Fingerprints This is an analysis of the effectiveness of multi-modal (finger and face) a...
متن کاملMultimodal Biometric Identification System Based On Iris & Fingerprint
This paper is related to the development of an innovative multimodal biometric identification system. Unimodal biometric systems often face significant limitations due to sensitivity to noise intraclass variability and other factors. Multimodal biometric identification systems aim to fuse two or more physical or behavioral traits to provide optimal False Acceptance Rate (FAR) and False Rejectio...
متن کاملBIOMET: A Multimodal Biometric Authentication System for Person Identification and Verification using Fingerprint and Face Recognition
This paper suggests the multimodal biometrics system for identity verification using two traits: face and fingerprint. The proposed system is intended to use for the training database includes a face and four fingerprint images for each individual. The final decision is made by first individual score of face and fingerprint compares with enrolled templates and then makes fusion at matching scor...
متن کامل